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ABSTRACT

A theory and resultant calculations are presented, predicting
the noise generated by a lifting rotor in forward flight. With
suitable adjustments in parameters, this theory reproduced

(by numerical integration) the closed form results of Garrick
and Watkins in their investigation of noise produced by a pro-
peller. The theory presented here accounts for (1) asymmetry
of inflow, lift, ana drag; (2) non-linear section characteris-
' tics, compressibility, and reverse flow; (3) first harmonic

; and steady rigid blade flapping and pitching; (4) rotor shaft
4 tilt; and (5) chordwise distribution of lift and drag forces.
Sound pressure levels were evaluated for up to 20 harmonics at
a general field point translating with the rotor hub, for the
H-34 and HU-1 helicopters. A comparison with experiment is
also presented.
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PREFACE

This program was conducted by Rochester Applied Science
Associates, Inc., under Contract DA 44-177-AMC-204(T) and
was carried out under the technical cognizance of Mr. John
E. Yeates, U. S. Army Aviation Materiel Laboratories, Fort
Eustis, Virginia. The principal investigator, at RASA, was
Dr. Robert G. Loewy; associated with him was Mr. Lawrence R.
Sutton. The RASA subcontractor for machine computation was
Scientific Calculations, Inc. Mr. H. Sternfeld, of the Ver-~
tol Division, Boeing Company, provided a special narrow-band
sound spectrum analysis for use in the comparison of theory
and test. .
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SYMBOLS

a,d,f,q9,1 pulse shape variables, see Fig. 4

a & 2 b normalized Fourier coefficients

oi’ "mi’ "mi of general pulse shape

ASL asrodynamic section loading,
i.e. force normal to the blade
chord per unit span

B number of blades in the rotor

c velocity of sound, ft/sec

ci blade chord at radius station
i, £t

ci - ciconﬁi steady part of the projection
of blade chord on the swept
surface

cN or CN blade element normal force

ij coefficient at source point ij
C C C ,C coefficients of 1lift, incom-

pressible drag, compressibility
drag, total drag at source
point ij

amplitude coefficients of Fourier
cosine series for lift, incom-
pressible drag, compressibility
drag, at radius station i

= 2
where Prof 0.0002 dyne/cm

flapping hinge offset, ft

complex amplitude of force
acting on the fluid in the x,y,
z direction, at the frequency of
the mth harmonic, at the source
point ij

normalized pulse shape at radial
station i, in general, for lift,
for incompressible drag, for
compressibility drag
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imaginary number

inverse of wave length of mth
harmonic

lift, incompressible drag,
compressible drag, total drag
acting on incremental span
length at source point ij

harmonic number

Mach number

Mach number of a blade element
at source point ij

maximum number of azimuthal
increments

sinusoidally varying pressure

complex amplitude of pressure
sinusoidally varying at fre-
quency w or harmonic m

blade twist angle, radians, per
fraction of blade length from
flap hinge to tip, positive
when decreasing with increasing
radius

blade radius at station i, mea-
sured from shaft axis along un-
flapped blade

total rotor radius, £t

indicates the operation of taking
the real part

amplitude radius, see Eq 2a
time, sec, measured from wj-o
fundamental period, sec
resultant relative air velocity

perpendicular to a blade leading
edge at source point ij
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component of Ui perpendicular
lface, positive

component of Uij tangent to the

U &
P to the swept su

up

Up
swept surface

v averaged induced velocity as-
sumed constant over the rotor,
positive down

v aircraft velocity

X,¥:2 Or xij 'yij 'zij

Xor¥o1%0

%44
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Bj = Bo-Bicowj-stinwj

Bo

B1
B2

y = /IHZ
Ari,AWj

coordinates of "source points"
at radial station i, azimuthal
station j, in a translating Car-
tesian system with origin at

the center of the rotor, see
Fig. 1

coordinates of "field points"
in the same translating Car-
tesian system as defines the
"source point" locations

blade element aerodynamic

angle of attack at source point
ij

tilt of rotor shaft relative to
vertical, positive aft

blade flapping angle at azimuth
angle wj' positive up

coning angle, positive up

coefficient of longitudinal
flapping positive so as to make
rotor tilt aft

coefficients of lateral flapping
positive so as to make rotor
tilt to port

increments in blade radius,
azimuth angle

xii
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U
¢ij = arc tan (ﬁs)ij

= Qij-eij
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blade geometric pitch angle,
radians, positive nose up at
radial station i, azimuthal

angle wj

steady part of eij

collective geometric pitch
angle, radians, positive nose

up

lateral cyclic pitch angle,
radians, positive nose up

longitudinal cyclic pitch angle,
povitive nose up

normalization factors for lift,
incompressible drag, compressi-
bility drag, at source point ij
air mass density

phase radius, see Eq 2a

duration of pressure pulse at
source point ij, sec

azimuth angle, see Fig. 1 and 2

phase angles of Fourier cosine
series for lift, incompressible
drag, compressibility drag, at
radius station i

non-geometric part of angle of
attack at source point ij

frequency of oscillatory pres-
sure,rad/sec

xiii
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i
I
3
m
)

x'y'z

T day S

B S

rotor angular velocity,
rad/sec

radial station
imaginary part
azimuthal station
harmonic number

field point, or steady com-
ponent

real part

direction of force, along
positive Cartesian axes

frequency component
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SUMMARY

The lifting rotor is considered as a swept surface, area
segments of which are subjected to oscillating pressures,
expressed as a Fourier series in time, as was done for the
propeller in axial flow by Garrick and Watkins.> 1In this
case, of course, the theory is extended tec include in-plane
components of forward speed and azimuthal asymmetry. The
sound pressure at any field point is then found by a straight-
forward numerical integration which uses as inputs (1) lift
per unit span as a function of radius and azimuth, (2) for-
ward speed, (3) rate of descent or climb, (4) RPM, (5) rotor
geometry, including non-linear compressible airfoil section
characteristics, and (6) first harmonic and steady blade root
angles of flapping and pitching. This approach has the ad-
vantage of calculating either near or far field noise, includ-
ing all effects other than "thickness pressure”> and that due
to the "white" components attributable to random turbulence

in the boundary layer or the wake. Impulsive changes in load
around the azimuth, due either to compressibility or to vor-
tex interactions are therefore easily investigated. Radiation
patterns are investigated for the H-34 and HU-1A helicopters,
both around the azimuth and in the shaft direction, for
several forward speeds, and the sound spectra compared with
measurements for selected cases.
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CONCLUSIONS AND RECOMMENDATIONS

The theory for calculating propeller rotational noise has
been extended to account for (1) asymmetry of inflow, lift,
and drag; (2) non-linear section characteristics, compressi-
bility, and reverse flow; (3) first harmonic and steady rigid
blade flapping and pitching; (4) rotor shaft tilt; and (5)
chordwise distribution of 1lift and drag forces, such as are
found in the operation of lifting rotor-propellers in for-
ward flight. A numerical integration is used to evaluate the
sound pressure levels for up to 20 harmonics at a general
field point translating with the rotor hub.

By comparison with a closed form solution, it has been shown
that the numerical integration is quite accurate for axial
flow when azimuthal increments of 1° (or smaller) are used.
In addition, the pronounced reduction in first harmonic sound
level indicated by the closed form solution at a flight Mach
number of two-tenths, two diameters to the side and about
three-fourths of a diameter in front of the propellers’, is
shown to be a spurious consequence of a "far field" assumption.
Similar nodes at other flight speeds and field points would
probably also be severely modified by an "exact" numerical
integration using the subject theory.

Application to two helicopters currently in widespread use
showed that the first harmonic rotational noise has by far
the highest sound pressure levels in hover, but because of
the low frequencies is still marginal with respect to the
threshold of hearing. The second harmonic frequency falls
just above the lowest for which there is experimental data,
and there is good correlation with measured sound pressure
levels for this component. Successively higher harmonics,
however, are predicted to fall off rapidly, whereas the
measured values do0 not. Contaminating influences in the

test setup (which were not performed for the present pur-
pose) include the presence of the tail rotor, reciprocating
engine exhaust noise, "sounding-board" effect of fuselage

and other surfaces, and relatively large uncertainty as to
the elevation of the hub with respect to the microphone. De-
ficiencies in the theory include lack of "thickness" rota-
tional noise, "vortex" noise due to boundary layer turbulence,
wake vortex noise, effect of ground plane and downwash field
refraction on the radiation pattern, and frequency shifts

due to time-varying velocities in the downwash field.

The principal effect of forward speed is to raise the higher
harmonic levels. This increase may occur abruptly or gradu-
ally, depending on the harmonic content of the aerodynamic
section loadings, as would be expected. This increase occurs
much more gradually with the four-bladed H-34 than with the
two-bladed HU-1. No attempt at generalizations should be

/4
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made without more extensive investigation than was possible
in this study.

Octave band radiation patterns in the azimuthal sense were
close to symmetric, particularly for the HU-1 helicopter, one
diameter beneath the hub over a speed range from hover to
115 knots and at radii of two and ten diameters. Some small
polar dissymmetry appears in the azimuthal radiation patterns
of the H-34 helicopter, for the lower octave band, at the

: higher speed, and at ten radial diameters.

Variations in octave band sound pressure level were noted with
change in vertical distance beneath the rotor. The variations
are similar to those for the first harmonic of a propeller in
axial flow. For the rotor, a peak occurs between two and five
diameters below, depending upon radial distance from the hub.

The reduction of sound pressure level with radius in the first
three octave bands, at an azimuth y,=270°, is roughly as one
would expect. However, if the onset of spherical spreading is
chosen as the criterion for determining "far field", this may
be more like one hundred diameters from the hub than three, as
is often used. Moreover, a purely mathematical definition of
far field may lead to spurious theoretical predictions, as
shown by the propeller example mentioned above.

e =g

Increasing the number of blades appears to be the most effec-
tive means of reducing rotor rotational noise. An example in
which the number of blades was increased from two to three for
the HU-1 resulted in a significant decrease in sound pressure
level. The effects of compressibility, RPM and impulsive down-
wash were not significant. Increasing blade chord resulted in
a small but fairly general decrease in sound pressure level.

L P T T
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The following appear to be promising directions for future
work :

e

l. Perform sound level measurements using existing rotors
under conditions specifically designed to isolate rotor
noise from all other sources. (Some of this work has un-
doubtedly already been done in research carried out at
Southampton and perhaps United Aircraft, but data have not.
been generally available.) Correlate the levels so ob-
tained with the results of the present theory as applied

: to the new test configurations.

2. Using analytical techniques such as proposed in Ref. 10,
and perhaps measurements on rotating cylinders and in the
boundary layer on full-scale rotors, attempt to predict
vortex noise for correlation with Refs. 21 and 22, and ul-
timately arrive at a method for calculating rotor vortex
noise to be added to the rotational noise of the present
study.

3




3.

Extend the present digital computer program to allow
prediction of the rotational sound fields of tandem
rotors and rotor- in ground effect.

Attempt to predict the effect on rotor noise of both
ordered and random velocities in the wake beneath the
rotor.




INTRODUCTION

Understanding the lifting rotor-propeller as a noise source
has recently become a technical objective of major importance.
There are two factors: (1) military use of helicopters in
tactical situations imposes the requirements for low external
noise levels with a new authorityl!; and (2) the introduction
of turbine powerplants in the present generation of rotary-
wing and V/STOL aircraft leaves the rotor-propeller as the
dominant source of low frequency noise. These components,

of course, are precisely those which are attenuated least
with distance. Thus, the aircraft's rotor-propeller noise
characteristics will, in combination with its approach speed,
determine how much time an enemy will have to prepare for

the aircraft's arrival.

A second important consideration is the difficulty of attain-
ing a satisfactory sound treatment to reduce rotor noise as
experienced inside the aircraft. It is generally accepted
(Ref. 2, Figures 9 and 10, for example) that such reductions
must be achieved at the source, for frequencies below about
200 cps, since the weight penalty for significant attenuation
is usually prohibitive.

From both these viewpoints, as well as consideration of the
obvious influences of rotor noise on helicopter ASW operations,
commercial applications, and the relatively unexplored opera-
tion of VIOL propellers in the transition regime, it is im-
portant that greater insight be achieved regarding the mecha-
nism of rotor-propeller noise generation.

Investigations in the field of helicopter rotor noise have the
benefit of years of work dealing with airplane propellers.3,%,5
Differences between measured rotor noise levels and those
predicted, however, using the empirical relations for propel-
lers® indicate that the applicable range of parameters is too
limited, even when used for hover or vertical flight. The
profound differences which come about in forward flight are,

of course, clear. It is the latter to which this study
specifically addressed itself.

The theory of propellers is extended here to allow prediction
of the rotational noise generated by lifting rotors in forward
flight. It will be assumed that the time-varying pressures
experienced at each radial station along a blade are known for
a given helicopter configuration and operating condition. From
this, the sound radiation amplitude and distribution around the
rotor’ azimuth will be predicted in the fixed, that is, non-
rotating system. With these results, it will be possible to
treat the rotor like any other noise source on the aircraft in
predicting what is experienced in the aircraft or by an ob-
server on the ground.
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The effects of the approximately "white" noise which exists
in the turbulent boundary layer sheathing the blades, and is
modulated for the observer by the blade passage frequencies?’,
will be ignored in this ltudy. Also, pressure fluctuations
experienced as a result of the passage of the complex wake
of distributed shed and trailed vorticity with res ect to a
non-rotating observer translating with the rotor®,? will not
be considered. Although some recent analyses!? promise sim-
plification, the approach of, and in fact the extension sug-
gested in, Ref. 5 is followed rather directly. Effects
specifically accounted for in the sections to follow include:

l. VvVariations in velocity normal to the leading edge, angle

of attack, lift and drag with radius and around the azimuth.

2. Non-linear and compressible airfoil section characteris-
tics.

3. The influence of non-uniform induced flow on angle of
attack, and (in those instances where steady, two-
dimensional section data indicate that the section should
be stalled, yet it is not) on velocity normal to the
leading edge.

4. Reversed flow.
S. Coning, flapping, and cyclic pitch variations.

The effects of rotor-fuselage or rotor-rotor interference
will not be specifically examined except as they may exist

in the experimental or theoretical spanwise loadings used as
input for the analysis. It is felt, however, that the theo-
retical investigation reported here is a necessary first step
in increasing understanding of lifting rotor-propeller noise.

The underlying philosophy in this approach stems from the
impulsive nature of the airloads on a lifting rotor in for-
ward flight. Rabbott and Churchilll! first showed the very
rapid fluctuations which could be exgected with azimuthal po-
sition; Miller®, Piziali and DuWaldt’ and others tied the
existence of these very high harmonics theoretically to the
proximity of vortex elements trailed from the passage of pre-
ceding blades or the same blade in preceding revolutions.
Aside from the fact that approximations for other quantities -
such as amplitude and phase radius’® - would probably have to
be made for a closed form integration over the propeller-
rotor disc, it was felt that analytical representation of the
harmonics of airloads associated with non-uniform downwash
would be likely to lose components of interest. Since numeri-
cal integration would obviate the need for both kinds of
approximations, this approach was taken. The problems of
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obtaining satisfactory numerical accuracy and limiting
digital computer machine time to reasonable amounts were,
of course, recognized from the outset, and will be discussed
in the Results section of this report.
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ANALYSIS
This formulation follows the general procedure developed in
Ref. 5 and preserves much of the notation, the exceptions
occurring where it conflicts with helicopter terminology.

COORDINATE SYSTEM

The coordinate system is Cartesian, rectangular, right-
handed and oriented so that (1) the z-axis is vertical, (2)
the positive x-direction points in the direction of flight,
and (3) the origin is taken at the center of the rotor hub
(see Figure 1), so that the system translates with the flight
velocity, V.

Points on the surface area swept out by the rotor blades will
be called "source points" and identified as points x, y, z.
It will be convenient to use polar coordinates on the area
swept by the rotor blades. The azimuth angle, ¢, will be de-
fined in a plane perpendicular to the shaft and taken to be
zero on the negative x-axis, as shown in Figure 2.

A general point outside the swept area but translating with
the rotor will be called a "field point" and denoted by x4,
Yor 2o- Defining field point azlmuth relative to the pilot,
the azimuth angle of a field point, » is such that y_=0

on the positive x-axis. Since an intggratlon will evengually
be performed over the swept area, the "source points" will be
specified using a double subscript notation i, j. Here i
identifies the radius position and j the azimuthal position.

Equations for determining x, y, 2z coordinates of the source
points are derived geometrically by examining the position of

a particular blade of the rotqQr at any time, t. It is assumed
that the blade is inflexible but has a "flapping hinge", off-
set a distance, e, from the center of rotation. This allows

a blade to rotate out of the plane of rotation through an angle
Bj' which is assumed to be small. A point on the blade is de-

finad as being a distance r from the hub when sj-o. No other

motion of the blades with respect to the hub, other than pitch
changes (denoted by °ij)' will be accounted for. The rotor

shaft, however, is pictured as tilted through an angle ag in

the longitudinal plane. Blade point coordinates are then given
(see, for example, Ref. 12), when small angle assumptions are

made for sin 8 and cos B8, by
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xij - -ric0|chosc'-8j[ri-c]sina.
yij = -risinwj

zij - [ri-e]sjcosa'-riCOlelina' (1)

THE ACOUSTIC EQUATION

As in Ref. 5, we define

1.1t
P(xo.yo.zo.t)ARe[Pw(xo.yopzo)e W)

imBQt
- Re[Pm(xo.yo.zo)e ]

as the sinusoidally varying pressure at a field point (xo,
Yo+ %) With the frequency w=mBa.

Here 0 is the rotational frequency of the rotor, and R_, of
course, signifies taking the real part of a complex nuffber.
Steady conditions will be assumed; i.e., what happens in one
revolution happens in every other, and in fact, what happens
to one blade at a particular azimuth is repeated on every
other blade when it is at that azimuth. It follows that all
phenomena will be periodic with the fundamental period
T= %%; thus m is the harmonic number. If we can determine
the harmonic components of the forces acting on the fluid at
a source point in the directions of the coordinate axes, namely
, and Fm » then we can calculate the sound pres-

F s F

m*ij myij 213

sure at a field point from the expression
imBa¢t.

Ry [P (x,,¥,02,)e )

-iko
1 ) 9 9 .e imBat
= Re 77t merx—o‘*“mym‘”‘mzrz;}—r* ]

which is given, in slightly different form, as Eq. (6) in
Ref. 5. Here, :

mBSQ
k = =&

§ = /(x ~x) I+ I(y _-y) Z+(z_-2) 7]

(2)

10



ol Mggg-x)+s

\'4
M-a

C = velocity of sound
y = /I-M? (2a)

REPRESENTATION OF FLUID FORCES IN TERMS OF FORCES ON THE
BLADES

The forces on the fluid are those which cause the rotor to ex-
perience, as reactions, lift and drag. An area element of the
swept surface may be thought of as having such forces on it as
arise from calculating a force per unit of projected blade area
and then multiplying by the differential of swept area. This
step may be obvious, but if it is kept in mind, it will em-
phasize that we are dealing with "effective areas" and "effec-
tive pressures." Losing sight of this might make it appear
that we are calculating fluid pressures in the x-direction
different from those in the y-direction, or, as another
example, that we are thinking of viscous drag forces as arising
from fluid pressures just as normal forces do; in fact, neither
of these statements is true.

Let us examine the force per dnit blade area, irrespective of
its source or direction, which is experienced by an element of
the swept surface at some azimuthal and radial station. It
will have a time history such that as each rotor blade sweeps
through, pulses are experienced. The duration of these pul-
ses is Tij' and they recur after a period T, as shown in

Figure 3. Note that if the blade chord length is Cy and the

blade geometric pitch angle 6,., then the projection of the
chord length on the swept sur*ace is Cicoseij and T4 "

C;cosé

—i;—a—ii. To avoid the complications which otherwise arise,
i

it will be assumed from this point that

C
Cicoseij=cicoseiApi and Tij"i‘i}ﬁ
where ei is the mean pitch angle at a given radius. Since

X,-e
n = 1 -9-(-—1—-)
°ij e°+elcos(wj)+6281n(wj) R—e
where g is the twist built into the blade in degrees per

11
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fraction of blade radius, approximating eij by 0y is tanta-

mount to neglecting 6; and 6, which are rarely higher than
about 10°, and the total angle °ij will almost always be less
than 25°.

The shape of the pulses will, of course, depend on the distri-
bution of force over the chord. Now suppose we limit ourselves
to operating regimes where the rotor blade is unstalled and re-
verse flow can be ignored. If we handle 1lift, incompressible
drag and wave drag separately, then we can assume with little
error that only the magnitude of the pulses in Figure 3 will
vary with azimuth, and that their shapes will be constant,
except for the variation of 1y with radius. 1In Ref. 5, the
effect of chordwise force distribution is discussed at some
length as having appreciable effects only on the higher har-
monics. On the other hand, the rotor "bang" or "slap" noise
reported in Refs. 7 and 13 is a relatively high frequency
phenomenon, and is such an important aspect of rotor noise
that chordwise distribution differences have been purposely
retained in this analysis. Putting aside for the moment the
question of the magnitude of the pressure pulses, their shapes
can be expressed as a real Fourier series:

Ja cosmBat+b ~sinmBat)
i

f, = a
i i mel™

o]

Note that the shape function, f£,, can be thought of as a func-
tion either of chord length projection on the swept surface, C!
or of time, t. This function lacks the index j, identifying
azimuth, since it is thoughtof as "normalized," and, also for
the moment, as beginning at t=0, which coincides with wj-o. For

convenience the coefficients a_ , a_ , and b are normalized
°% M my
so that fi =1.0. Thus, to account for the variation in lift
max
and drag around the azimuth, we must establish normalization
factors for these Fourier coefficients.

Since we have specified that the shape represented by the nor-
malized coefficients will always have a maximum ordinate equal
to unity, then the aerodynamic lift acting on a span length
Ar, is

i

%-o (Uij)ZCiAriA?iijidc;_Ari

L,.(t) =C
e Lij chord

13



‘ij = normalization factor for lift

Uij = resultant relative wind velocity normal to blade
leading edge

p = ajir mass density

C = lift coefficient

Similarly, for incompressible profile drag

o 1 2 <. |%.ac!
D"ij (t) ch 70 (Ug 5) CiAriAKiijidCiAri
ij chord

and for compressible (wave) drag

- 1 2 <. .| £
Dwi*(t) CDw Ip(uij) CiAriAxiijidciAri
- ij chord

Since sound is an oscillatory phenomenon, we may drop the
steady term in the Fourier series. Furthermore, since we have
expressed the amplitudes of the force components Fo » Foo '

Xi4 Yij
and Em as the complex multiplier of the time function
zij
elmBQt

we will prefer to rewrite the real Fourier series in the form

£, = Ja_ cosmBat+b_ sinmBet)=Jc_ cos(mBRt-¥_.)
=1 mi m=1"i mi

i(mBQt-Wm.)]

= R [Jc_ e i

m=1"i
Therefore, the normalized coefficient Cn e-lwmi is associated
i
with the blade lift, by the equation directly above; then we
can define two more sets of similar quantities associated with
(1) incompressible drag, say dm and Pmi' and (2) compressi-
i

14
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bility drag, namely emi and Kmi *

Analytical expressions for such Fourier constants are de-
rived by the usual means (see, for example, Ref. 14), for the
three chordwise shapes shown in Figures 4(a) through (c). The
selection of these shapes as approximations for lift, incom-
pressible drag and wave drag was based on a perusal of two-
dimensional section data below stall, and computational con-
venience.

The corresponding formulae are as follows:

C ] 1}
mi r Bmci BmacC

= i - !’. - i 2
fidci m{ [d(l=-cos = )+ a(]. cos = )14 +
chord
mBC! BmC! BmacC!
[—2- (asin—2istein——1)2)1/2
i i 8 ry
mBC! BmC! BmacC|
(—2- (asin—24tgin—1y )
i 2 () Ty
Yod = arc tan{ , : }
BmC BmaC
d (l-cos———jﬁ»&(l-cos i)
r. 'a r
i i
dmi Bmci
T.ac: T
5 it |
chord
Bmci
l" =
mi iri

15
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e ' ’
my BmfC Bmgci

]——= m—rrm'rT‘ [(1-9) cos——2- (1-f) cos—
£ ac] i i

chord

BmC! Bmfc' BmgC ! BmC}
(f-g) cos i]2+[(1-g)sm = -(1 f)sin i (f-g)sin i]2}1/2
i
Bmfci BmgC' Bmci
(1-g)sin (1-f)sin = -(f-g)sin
i Ty
Kmi = arc tan{ A#EET_' Agchl Bmci}
(1-g)cos 54 (1-f) cos 5 (f-g) cos T (3)

Note that the 1lift, incompressible drag and wave drag co-
efficients are all functions of (1) local "free stream" Mach
number, Mij' perpendicular to the blade leading edge and (2)

aerodynamic angle of attack %j4°

To allow for the fact that these pulses do not always start
at t=0, but at time t+wj/n, we need merely multiply by

e-imBQ(wj/Q) e-imbj

where

vy 4 (3=1) Ay

Ay = increment in azimuth angle from one station on the
swept area to another,

j -1' 2,3ooon

n = total number of azimuthal sections into which the
swept area is divided

From these definitions it follows that the mth harmonic com-

ponent of the forces axperienced by the fluid due to blade 1lift
and drag may be expressed as minus the following:

17
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Before these sinusoidally varying forces can be evaluated or
expressed in terms of components along the coordinate axes,
it is necessary to establish (1) the direction and magnitude
of the resultant velocities U (since 1ift and drag forces
are defined as perpendicular igd parallel to them, respec-
tively), and (2) the blade orientation.

RESULTANT VELOCITY AT A BLADE SECTION

Rotor aerodynamics derivations (see, for example, Ref. 12)
usually start by defining two velocity components in a plane
normal to the blade leading edge. These are Up and Ups com-

ponents parallel and perpendicular to the shaft axis, respec-
tively. The convention for Up is positive up; UT' of course,

is always taken positive when directed toward the airfoil
leading edge.

Accounting for components of forward speed, rotational speed,
an average induced velocity component v (assumed positive down)
and an effective component normal to the chord as a result of
flapping velocity B, yields

18
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UT = Vcosassinw+nr

Up - V(sinas-BCOSascosw)-v-B(r-e)

This neglects the radial component of velocity, assumes that
each strip of airfoil perpendicular to the leading edye acts
as an airfoil in two-dimensional flow with the same resultant
velocity normal to the leading edge and the same angle of
attack, and makes the usual small angle assumptions. The ac-
tual induced velocity is a quantity, which, in general, varies
both over the blade radius and azimuth, and its calculation
has been the subject of extensive research. 1Its effect on
angle of attack may be quite significant, especially where Up

might otherwise be small. It is usually assumed, however, that
induced velocities in the plane of the rotor are small compared
to U,, except where that velocity is small, in which case the

resulting forces are unimportant. For this reason, the re-
sulting velocity Uij will be calculated using an induced veloc-

ity v assumed to be uniform over the disc, and calculated from
the momentum theory expression (Ref. 15).

thrust
21rR‘°-p[(Vsinas-V)2+(Vcosas)2]1/2

vV =

The approach used to account for the actual variations in in-
duced velocity over the disc, both normal and in the plane of
the rotor, will be explained in the following section.

DETERMINA?ION OF BLADE ELEMENT ANGLE OF ATTACK, LIFT AND DRAG

As shown in Figure 5, the blade angle of attack, “ij' is a
function of the velocity components Up and UT and the local
geometric blade pitch angle, eij'

In this study, it will be assumed that the lift, or more ex-
actly, the loading per unit span normal to the blade chord,

the "aerodynamic section loading," is known from experiments

or previous calculations. Actually, measurements reported in
Ref. 16 and 17 are to be used as inputs to this analysis.

This eliminates the need for an accurate knowledge of v as a
function of r and ¢y, which is acknowledged as a necessity if
anything but the lowest harmonics ot blade airloads is needed.

The procedure is as follows. Normal force coefficients CN(M,Q)

will be tabulated for the airfoil section of interest, as will
the aerodynamic section loading (ASL) for a given flight con-

19
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dition as a function of r and y. For each element of swept
area corresponding to a source point, the resultant velocity
will be calculated from

= /(Vcoussinwj-l-nri)2+(V[sinas-8jcos<xscoswj]-v-gj[r-e])z

U

the Mach number from Mij = —éi

and the normal force coefficient from

(ASL) ;

Cngy T mp—(u—i;r}m (5)

The table of airfoil coefficients then will be entered with the
known values of CN and Mij' and the corresponding value of

ij
°ij read out, interpolating when necessary. With Mij and “ij

thus known, similar airfoil coefficient tables for CL and
i3

CD as functions of these same variables will be entered and
ij

the lift and drag coefficients read. A simultaneous "look-up"
for C at the corresponding a,, but with M, .=0 will be made

Dij ij ij

to determine Cp « This subtracted from CD will yield
v i)
ij

C This information is all that is needed in addition to

D L ]
Wiy
Eq. (3) and Eq. (5) to completely determine L and D as

™13 i3

written in Eq. (4).

It is important to note that the value of CN given by Eq. (5)

may exceed any that can be found in the tables of two-dimen-
sional coefficients, as pointed out in Ref. 18. This can be
explained in several ways: (1) the in-plane components induced
by the vortex wake may be significantly increasing the resul-
tant velocity Uij' (2) the effects of radial flow may be suf-

ficiently energizing the boundary layer to delay stall, (3)

unsteady effects may be sufficient to delay stall. 1In view of
the paucity of airfoil section data either in the presence of
spanwise flow or under unsteady conditions, the approach taken

21
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here was to have the machine program evaluate the minimum

increment required in Uij to make Cx fall within the steady,
i3

two-dimensional data. For that radius and azimuthal station,

the adjusted value of Uij will thereafter be used.

Certain details of the "table look-up" operation involving
CN, CL' CD' and a are worth noting. The present program is

set up for symmetric airfoils; all values, therefore, are tab-
ulated as positive. The extension to cambered sections would
not be difficult. 1In any case the sign of the quantities Up

and Up do not appear explicitly, so care must be taken to dif-

ferentiate between regions of positive and negative angle of
attack, and between normal and reversed flow. The signs of UT

and (ASL) are tested and the procedures listed in Table I are
followed.

Considerations leading to Eq. (6) in the section to follow
will show that these special procedures represent the aero-
dynamic forces as vectors in the appropriate direction. This
is a straightforward transformation of coordinates operation;
again, using the approximations cosB=1 and sing=8, it follows
that

Fx = ((LsinQ-Dcoso)cosassinw+(Lcos¢+Dsin¢)(Bcosascosw-sinus)]
FY = [(Lcos¢+Dsin¢)Bsiny-(Lsin¢-Dcosé¢)cosy]

F, = [(Lsino-Dcoso)sinwsinas+(Lcos¢+Dsin¢)(Bsinascosw+cosas)]
(6)

where, for convenience, the subscripts m, i and j are omit:-ed
and considered to be understood.

APPLICATION OF THE ACOUSTIC EQUATION

Now to use Eq. (2) to calculate the mth
sure at a field point (xo, Yor zo) due to the m

oscillatory pressure at a source point identified by the in-
dices (i,j), we need only (a) to note that

harmonig of sound pres-
h harmonic

22



£

T

L0 -

pouTe3qo ©® SNUIW 08T o087 SnurTw paure3zqo » paure3qo ©» SNUTW © I03 °9sn
paurte3jqo a, SNUTW pautejqo a, SOUTKH pautejqo a, a, I03 asn
1 T 1 T
paute3lqo D sSnulpW pautejqo D paute3lqo "D SnutiH D I03 asn
_ _ _ uotbax ur o
008T>©>,59T 008T>0>059T1 oST>®>0 SA zu I93ug
L Bon T L

aat3eban "n aAaT3IRbaN "'n 2AT3TSOd 'n sdajs

aaT3eboN TSV 9AT3TSOd ISV aat3ebaN TSV ese)

MO1d a503A39 OGNV LJIT JATIVOAN dod
SNOIIONYISNI .dN-NOOT-TIEVL, TVIOALS
I FTaVL

23




ik -ik ik _M ik -
) (&— °ij) - I méil m ( | 1 (xg X)

+ ]
3xo Sij Sij 'L j i3

-ik o -ik_o 2
3 mij, _ m i -
vy ) T Tty T el o7y

sij

-ik c -ik o
e m 1 m
) = —('S_)T'i[ik +—l (z -z) (7)

o T8y

(b) to substitute L and D from Eq.
spectively, in Eq. (6), and (c) to substitute the resulting

force components and the Eq. (7) expressions into Eq. (2).
The resulting equation can be broken into real and imaginary
parts and, after algebraic manipulation, cast in the follow-

ing form:

K
i -
Pm(xo,yo,zo)in T_ j {Aijlkﬁ jsin¢lj mijcos¢ij] -
S;4M _
j mijcos¢ij mijsin¢ij]+ [Gmij(Iijcos¢ij-Jijsin¢ij)

Eﬁij(rijsin¢ij+Jijc°s°ij)]}
K

1 i (A

Pm(xo'yo'zo’ijI - - sij 13 mijsin¢ij+cmijcos¢ij] -

)
i
E[ﬁhijcosoij-c sin¢ij]+——}-k [H ij°°s¢ij'sij81“°ij) -

Eﬁij(Tijsin°ij+3ij°°8°ij)]}

24

(4) for L and D, re-

(8)



where

xij = {yz(yo-yij)coswj-[(xo-xij)cou8 +

yz(zo-zij)sinas]sinwj}

. Byy = {(xo-xij)3j+yz[(yo-yij)sjsinwj +

(zo-zij)Bjcosszinas+cosas)]}

0
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k
1 = -
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The integration proceeds by summing all the real parts of the
oscillatory pressure of harmonic m, contributed by all the
combinations of i and j; this also applies to the imaginary
parts of the sound pressure components. If Pm and Pm are

R I
in psi, then the sound pressure level in decibels is

2
H]
§
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RESULTS

The dangers inherent in a numerical integration of an ex-
pression of the sort given in Eq. (8) lie in the alternating
nature_of the trigonometric functions in the expressions for
E , F , G , and H . The arguments of these functions
iy Miy  Myy ™4

vary around the swept area of the rotor-propeller as the sum
(mbj+k aij) The quantity km will be recognized as the in-

verse of the wave length of the mth component of sound, and
thus k aij is the number of waves of this component between

the source point at ij and the field point. This fact is em-
bodied in the definition of °ij as the "phase radius." Clear-

ly, as (mbj+kmoij) becomes a larger and larger number, more

and more significant figures must be carried to obtain a mean-
ingful answer, since only that part left after subtracting 2=
times the largest integer leaving a positive quantity is per-
tinent. The term mbj, of course, may be thoughtof as "good"

to an infinite number of places, and since km=mBn/C this can

also be thought of as infinitely "good", any error being dis-
missed as making exact some other case with a slightly differ-
ent rotational speed, 2. The phase radius oij' therefore, is

critical. The digital program is arranged, accordingly, to
iterate on the value of sij’ using a recurrence scheme where

S = S°+AS

ijk k

where . A ;
- ) iik] -s +[ASk] .
k+l 2(S +Ask)

The computer continues to iterate until

-5
ASijk+l < 10 “feet.

This, for example, is within about l/3x10-4 wave lengths for
the 20th harmonic of a six-bladed rotor turning at 300 RPM.

As a test both of the program itself and of the accuracy of
the numerical integration, a calculation was performed for the
sound pressure level at the fundamental frequency generated by
a two-bladed, 1l0-foot-diameter propeller, producing 1600 pounds
of thrust at 1582 RPM and a forward speed corresponding to
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M=0.2, and drawing 2680 foot-pounds of torgque.

Results for this case are given in Figure 5 of Ref. 5 as a
function of Xq when yo-zo feet, zo-o. The present program is,

of course, capable of the same calculation, merely by setting
as-90°, eij'eo' Bj-o, and the remaining input appropriately.

If only this is done, however, a one-to-one correspondence
would not exist between the Garrick and Watkins results and
those obtained here. The following approximations, made in
the earlier work, must also be introduced in the subject anal-
ysis, at least for this one check case:

r, =r = 0.8R } effective
i effective ring
2 i =
B§1/2°Ci(uij) [cLi.c°s°ij+CDij51n¢ij]Ari thrust
J uni-
form
= 1600 pounds 1ift
) ‘ and
BZl/ZpCi(Uij) [CD. cos¢ij-cL sm¢ij]Ari = torque drag
i ij i]
= 2680 foot-pounds
- - . mMBC
m, ®m, dm. B § 3
i i i
approximate square wave
Ymi T “mi < rml =L
. Yiyoy
S S - in exponentials
o So
= So in denominator "far field" approximation

of fractions

/1] ol

(-é-)2 neglected compared to

The case described above was run both with and without the

"far field" and square wave approximations, using an interval
of 1°. The results are compared with those of Ref. 5 in Figure
6. It is interesting to note that (1) the numerical integra-
tion duplicates the closed form analysis, (2) the sharp reduc-
tion in sound level predicted roughly one diameter ahead of the
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propeller appears to be spurious, and a result of the "far
field" approximation, and (3) for this harmonic, the square
wave approximation leads to no significant errors.

COMPARISON WITH HELICOPTER NOISE MFASUREMENTS

Although this correlation with earlier computations is en-
couraging, the crucial test for any prediction method is a
comparison with experimental results. Simultaneous aerody-

. namic section loadings and sound pressure measurements for an
isolated rotor were not available; however, such measurements
are contained individually in Refs. 16 and 19, respectively,
for the complete H-34 helicopter in a hover. The gross weights,
moreover, were roughly the same in the two tests. According-
ly the sound pressure levels were calculated for the H-34
helicopter in hover for 220 main rotor RPM at a radial dis-
tance 200 feet from the rotor hub, and at a field point azi-
muth angle of 150°. The radial and azimuthal coordinates of
the field point correspond closely to "Position 23" in Ref. 19,
and these horizontal distances could be well controlled in the
referenced tests. Vertical distances were subject to a
greater percentage of uncertainty, since the pilot was attempt-
ing to hover the aircraft with the wheels 5 feet off the ground,

| and the microphones were hand-held. It will be shown later

that from hub height to two rotor diameters beneath the rotor,
sound levels in an octave band can vary as much as 25 decibels.
Accordingly, the z, distance was chosen as -10 feet and -16

feet to indicate the sensitivity of this parameter. These
dimensions were chosen as, roughly, engine height and wheel
height, respectively.

The results of the calculation are shown in Figure 7 as ver-
tical bars. To approximate measurements made over a reflective
surface, all the levels indicated as "calculated" have actu-
ally had 3 decibels added to them.

The comparison with the measured values is notable more in
1 the lack of correlation than in the agreement obtained. The
first harmonic frequency is below the response range of the
instrumentation used, so no check can be made for this com-
ponent. The second harmonic falls very close to a cluster of
the measured peaks, but for the third and higher harmonics
calculated levels are substantially low.

The source of discrepancy can be sought in both the theory and
the test results. Consider first the latter. The tail rotor
and the reciprocating engine frequencies are indicated on the
same figure; note that the tail rotor fundamental is exactly
6 times that of the main rotor. With a view toward more re-
fined test data as well as to substantiate the data presented
in Ref. 19, a second narrow-baiid analysis, not presented in
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Ref. 19, was obtained. This second sound spectrum is for the
same aircraft under the same operating conditions, but with
the field point azimuth shifted to w°-300°: at this field

point, maximum masking of the tail rotor and engine exhaust
noise would be expected. Some idea as to the contribution of
sources other than the main rotor is given by comparing the
test curves for wo-300° and wo-150° in Figure 7. Since the

masking certainly does not eliminate the effect of the unwanted
noise sources, "corrected" test data would be still lower than

that for wo-300°.

It is reasonable to question the number of azimuthal stations
needed to properly represent harmonics as high as the twen-
tieth. This case was, therefore, run with various numbers of
azimuthal increments. These are listed in Table II. It was
found that the breakdown shown as "Trial 1" resulted in accu-
rate calculation of harmonics up to the 7th. The limiting har-
monic was raised to the 13th when the size of the azimuthal
steps was decreased as indicated by "Trial 2" in Table II.
Finally, for hover, it was established that harmonics up to
the 20th will be substantially unaffected if the azimuthal
increments are reduced to smaller values than those associ-
ated with "Trial 3". The values shown as "calculated" in Fig-
ure 7 were obtained using the "Trial 3" breakdown.

In considering shortcomings of the theory, it must be noted
that the prediction method has been concerned from the outset
with only the sound resulting from resultant lift and drag
forces. Pressure fields due to blade thickness, boundary lay-
er turbulance and wake effects have all been neglected, and,
thus, one would expect underestimation of the actual sound
field. Another effect, not accounted for here, is suggested
by the fact that some of the measured peaks in the low har-
monic range are shifted appreciably from integer multiples of
the fundamental. Since the rotaticnal noise "sources" are
viewed as fixed on the swept area in this analysis, such an
effect cannot be associated with doppler shifts due to source
motion. On the other hand, much of the sound is received after
passing through the non-uniform and time-varying vertical flow
field just beneath the rotor. This could cause frequency
shifts and changes in the radiation pattern due to refraction.
It is likely, however, that for radiation pattern changes the
presence of the ground reflecting plane has a more pronounced
influence. A very curious aspect of the experimental spectrum
in Figure 7 is the fact that the 6th, 9th and 12th harmonic
peaks do not appear to have been shifted.

In spite of all the uncertainties in the comparison between

test and calculation discussed above, it seems that for har-
monics higher than the 3rd, rotational noise is probably not
the major source in hover. It is worth noting, however, that
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because of the high lst harmonic, the calculated overall noise levels
would check reasonably well with measured overall levels even in

hover,

ROTOR NOISE IN FORWARD FLIGHT

In the machine computation of rotor noise, basic input data
were obtained from Ref. 16 and Ref. 17, i.e., the data for ASL,

g B, & versus helicopter and flight velocity. Table III

provides specific cross-reference information. Tables V, VI,
and VII are exact print-outs of the airfoil input data used,
i.e., CL' Cpe CN versus a and M for 12 percent, 15 percent and

18 percent symmetric airfoils, respectively. In view of their
length, these three tables are located immediately preceding
the list of References at the end of this report.

The effect of forward speed is shown in Figures 8 through 15
for the H~-34 and HU-1 helicopters. The major influence of for-
ward flight is clearly in the higher harmonics, as would be ex-
pected. Since the prediction method is limited to the har-
monics contained in the representation chosen for the chordwise
pressure distributions shown in Figure 3, it is appropriate to
examine the values of the Fourier amplitude coefficients,

c. , d and e, . These are shown as functions of harmonic

my M L)

number for seven radial stations in Figures 16 through 21. The
"flat" character of these curves at the more outboard stations
indicates that the pressure distributions shown as a function
of time in Figure 3 are well approximated by impulses for these
and higher values of ri/ci'

The Fourier amplitude coefficients of an impulse are, of course,
constant for all harmonics (Ref. 5, Figure 3). Deviations
from impulse-type harmonic content occur in the inboard sta-
tions; it follows that before eliminating Eq. (3) in favor of

a constant, the relative importance of inboard versus outboard
stations as noise sources must be established. The greater
variations in velocity over the inboard blade sections at high
forward speed would be expected to emphasize the contributions
of these inboard sections. Accordingly, sound pressure levels
were calculated for the H-34 helicopter, flying at 115 knots
and a rotor speed of 231 RPM at a field point where RO-ZOO feet,

w0-150°, and zo--10.2 feet. It had been found that in hover,

the contribution of the outboard-most 10 percent of radius
could be more than 50 percent of the sound in almost all har-
monics. But at V=115 knots, the important contributions come
frcm the more inboard rings. Accordingly, revisz2d integra-
tion breakdowns, Trials 4 and 5 in Table II, were defined.

The percentage contribution from the concent: ic rings of swept
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TABLE III
CROSS REFERENCES FOR INPUT DATA FOR ASL, a_, B, 6

—
Helicopter Velocity  Ref. ASL 8 'l;_agg ag
0 19 19 10
H-34 23 16 29 29 10
79 64 64 10
115 109 109 10
0 152-153 317 5,35,319
HU-1 34 17 110-111 269 5,35,271
88 124-125 285 5,35,287
113 138-139 301 5,35,303
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area are indicated in Table IV based on a Trial 4 breakdown.
Note that a percentage greater than 100 means that tl:ea out-
board rings had a canceling rather than a reinforcing effect.
It would be expected that the higher the harmonic content of
the aerodynamic section loading, the more azimuthal stations
might be required to properly predict the higher harmonics.

In spite of this, no important differences were noted between
Trials 3 and 4, so the Trial 3 breakdown was used for all cal-
culations from hover to maximum forward speed.

?
!

It is interesting that the increase in higher harmonic noise
level with forward speed, as shown in Figures 8 through 1l
(i.e., for the H-34 helicopter), is rather gradual. The same
increase for the HU-1 helicopter, as shown in PFigures 12
through 15, however, appears to take place almost entirely
between hover and the "transitional® forward speed of 34 knots.
The cause of this is wost likely to be in the aerodynamic sec-
tion loading; a comparison of this basic information is,
therefore, shown in Figqures 22 and 23 for the H-34 and HU-l,
respectively. The oscillatory nature of these curves can be ‘

seen to increase markedly for the HU-l1 between V=0 and V=34
knots, while there is a gradual increase in the number of
"wiggles"” with speed for the H-34.

RADIATION PATTERNS

Enough calculations have been performed to allow sound radia-
tion patterns to be examined for individual harmonics. Such
a presentation, however, would entail a very large number of
figures. Since field measurements are often made using octave
band filters, it was decided to present the calculated data
in that form, in spite of harmonics falling on frequencies
which are borderline between one octave band and another.
Figures 24 through 27 show azimuthal patterns for the H-34 in
hover and at three forward speeds in the first three octave
bands at a radius of two rotor diameters. Figures 28 through
30 show similar data at a distance of ten diameters.

T

Although dissymmetries begin to become appreciable for the H-34
at higher forward speeds, there is nearly polar symmetry. Only
at ten diameters and in the first octave band radiation pattern
of the H~34 at high forward speed, does the pattern tend to be
lobe-like on either side of the longitudinal center line of the
helicopter and facing roughly aft. The existence of azimuthal
asymmetry apparently depends on both field point radius and
speed. These changes with field point radius are shown by
comparison of Figures 25 and 28, Figures 26 and 29, and Figures
27 and 30, for field points located in a plane one diameter be-
lnw the helicopter. The patterns might show greater changes

at other values of observer elevation; these were not investi-
gated.
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Radiation patterns for the HU-1 are available but, since the
data indicate more symmetry than the patterns for the H-34,
these are not presented.

The results of Garrick and Watkins® would lead one to predict
that rotor radiation patterns in the zZ, direction would show

greater variations. Figures 31 and 32 for the H-34 helicopter
show that this is indeed so for the first three octaves at
RO/D-2,10 and w°-270. In fact, the general character of the

variaticn beneath a lifting rotor is roughly the same as that
of the fundamental behind a propeller in axisymmetric flow,
regardless of forward speed. Sound pressure levels increase,
rapidly in most cases, for hub height downward and then fall
off slowly as the z, distance is increased negatively. At

two radial diameters (Figure 31), the maxima occur at about
two diameters of negative elevation; at ten radial diameters
(Figure 32), the maxima occur at about five diameters of nega-
tive elevation.

Variations with radial distance are of great interest for the
problem of aural detection. 1In this instance the individual
frequency components are most pertinenti since attenuation
due to atmospheric or terrain absorption’ is dependent on fre-
quency. However, to reduce the data presented, the calculated
results are again given by octave band. The radial trends are
shown on Figures 33 and 34 for the H-34 at V=0 and V=115 knots,
respectively. In both cases wo=270° and zo/D--l.

The particular point of interest is the distance beyond which
"spherical spreading”2? can be assumed to take place. Figures
33 and 34, therefore, have, in addition to the calculated
sound levels, a line which represents "spherical spreading"
extrapolated inward from a point 100 diameters from the rotor
center. Since the correction for spherical spreading is

Ry
Adb = 20 log,,(s=)
10 R2
where
R1 = distance from source point where sound pressure

level is known

Rz = distance from source to point where one wishes to
know the sound pressure level,

and since the abscissa of Figures 33 and 34 is a log scale, the
curves of spherical spreading are straight lines with slopes

of -20 decibels per decad2. Where the calculated curve becomes
tangent to and henceforth follows this line, then the total
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variation with radius can be said to be due to spherical
spreading alone. If this is the criterion for the "far field,"
then Figure 34 shows that the "far field" could be one hundred
diameters from the source. Note in Figure 34 that if a dis-
tance of three diameters were used as the base for extrapola-
ting the sound pressure level in the first octave band to a
distance of one hundred diameters, as is often suggested, an
error of 10 decibels could result.

TREND STUDIES

Compressibility effects were examined by compari.g sound pres-
sure levels associated with l2-percent and l8-percent airfoils.
Since one would expect larger compressibility effects at higher
velocity, the trend is examined for the H-34 in the 115-knot
case. The results are presented on Figure 35. For the field
point chosen, there is not much change in sound level between
the l2-percent and 18-percent airfoils.:

The effect of RPM was investigated with the H-34 flying at

79 knots. One notes that, in reality, there would be a change
in u=V/QR; this implies a change in ASL variation with azi-
muth. However, in order to isolate the RPM effect, such
changes in ASL are neglected. Airfoil section characteristics
are the same for both cases; appropriate changes in 8 and 6 are
made, however. The results are given for RPM=214 and 245 on
Figure 36. For the field point chosen, the only significant ad-
verse effect of increasing RPM appears to be in the fifth har-
monic.

The effect of increasing blade chord was also investigated,
again using data from the H-34 at 79 knots. The comparison is
made of normal chord and one 1.5 times normal. Appropriate
changes are made in 8 and 6, assuming that blade weight and
pitch mass moment of inertia ihcrease linearly with chord.
Again, constant airfoil section characteristics are assumed.
The results are presented on Figure 37, where a small but
fairly general decrease in sound level is noted for the larger
chord.

The effect of changing the number of blades from two to three
was investigated for the HU-1 in the 88-knot case. The chord
and ASL are adjusted to preserve constant total lift. No ad-
justment is required in 8 and 6, again assuming a linear de-
crease in blade weight with chord (which provides the proper
balance of lift and centrifugal moments to preserve 8). The
results are presented on Figure 38; for the field point chosen,
there is a very significant decrease in sound level for all
harmonics due to increasing the number of blades from two to
three.
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The effect of impulsive downwash was investigated by selec-
tive change in the aerodynamic section loading of the H-34
in the 1ll5-knot case. The modification was made over an in-
terval of azimuth approximately 20 degrees on each side of
100®* and for iractional blade spans of r/R=0.85,0.90 and
0.95, as shown graphically in Figure 39. This modification
was suggested by the data on Figure 7 in Ref. 23. That is,
theory indicates sharper variations than experiment. Since
data used in the present work was obtained using instrumen-
tation with a break-point of 30 cps, making the ASL more like
the theory would tend to correct for "rounding off" of sharp
peaks due to instrumentation limitations.

The results of the ASL modification are shown on Figure 40
which indicates that the main effect of this change is to vary
the sound level more markedly from one harmonic to another, at
least at the one field point used in the comparison.

The final trend studies of the present investigation were
associated with setting 8, CD and ¢ equal to zero. This last

change, of course, is tantamount to eliminating induced drag.
The case investigated was the H-34 in hover; the field point
was w°-270, RO/D--l, zo/Ds-l. The results indicate no signi-

ficant effect. Ref. 10 shows the contribution of coning angle
to the sound field and indicates that its maximum effect is in
the plane of the disc. In the present investigation, with the
field point one diameter below the rotor, the effect of coning
leaves the sound level unaffected to within 0.5 decibel. This
suggests that for typical helicopter rotors, a greatly simpli-
fied program could be used with no significant loss of accuracy.
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